Week 8 - Friday

COMP 4290

Last time

- E-mail attacks
- OS security
- Mandatory access control
 - Bell-La Padula

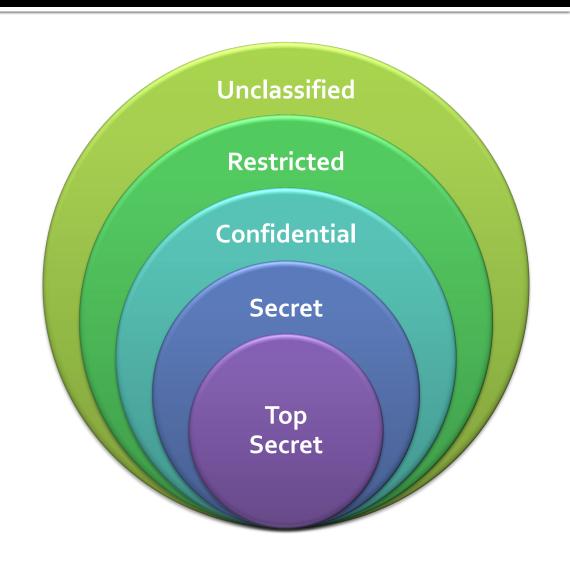
Questions?

Project 2

Assignment 3

Call for Mentors

- Hanby Elementary in Westerville is looking for mentors for two programs
- FIRST LEGO League (Tuesdays 2:45–4:45 PM)
 - Students research real-world problems and build and program LEGO EV3 Mindstorm robots to complete themed missions.
- Girls Who Code (Mondays 2:45–3:45 PM)
 - Girls Who Code students work on projects such as app or game design, website creation, and 3D printing prototypes that solve real-world problems.
- Both are great opportunities to give back to the community and build your resume
- If interested, send me an e-mail


Adam Garantche Presents

Mandatory Access Control

Bell-La Padula Model

Bell-La Padula overview

- Confidentiality access control system
- Military-style classifications
- Uses a linear clearance hierarchy
- All information is on a need-toknow basis
- It uses clearance (or sensitivity)
 levels as well as project-specific
 compartments

Security clearances

- Both subjects (users) and objects (files) have security clearances
- Below are the clearances arranged in a hierarchy

Clearance Levels	Sample Subjects	Sample Objects
Top Secret (TS)	Tamara, Thomas	Personnel Files
Secret (S)	Sally, Samuel	E-mail Files
Confidential (C)	Claire, Clarence	Activity Log Files
Restricted (R)	Rachel, Riley	Telephone List Files
Unclassified (UC)	Ulaley, Ursula	Address of Headquarters

Simple security condition

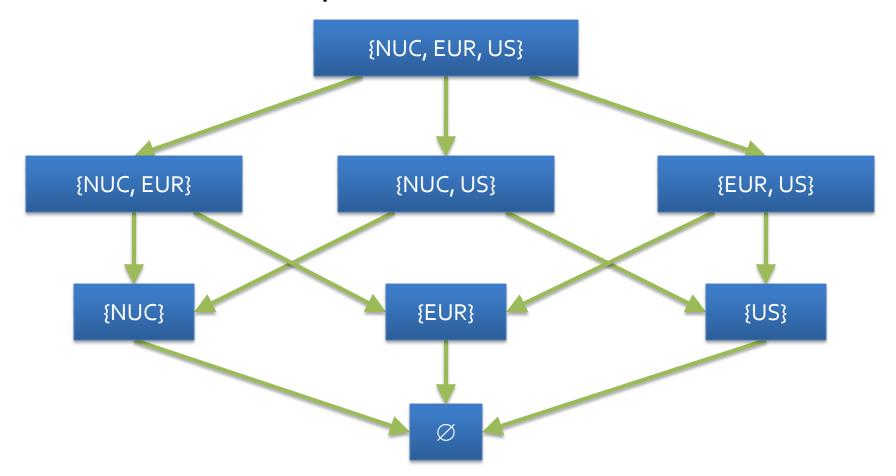
- Let level_O be the clearance level of object O
- Let level_s be the clearance level of subject S
- The simple security condition states that S can read O if and only if the level_O ≤ level_S and S has discretionary read access to O
- In short, you can only read down
- In a few slides, we will expand the simple security condition to make the concept of level

*-Property

- The *-property states that S can write O if and only if the level_S ≤ level_O and S has discretionary write access to O
- In short, you can only write up

Basic security theorem

- Assume your system starts in a secure initial state
- Let T be all the possible state transformations
- If every element in T preserves the simple security condition and the *-property, every reachable state is secure
- This is sort of a stupid theorem, because we define "secure" to mean a system that preserves the security condition and the *-property


Adding compartments

- We add compartments such as NUC = Non-Union Countries, EUR = Europe, and US = United States
- The possible sets of compartments are:

 - {NUC}
 - {EUR}
 - {US}
 - {NUC, EUR}
 - {NUC, US}
 - {EUR, US}
 - {NUC, EUR, US}
- Put a clearance level with a compartment set and you get a security level
- The literature does not always agree on terminology

Romaine lattice

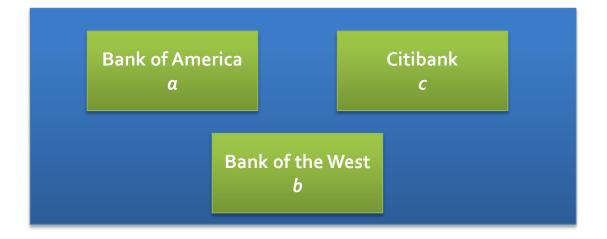
The subset relationship induces a lattice

Updated properties

- Let L be a clearance level and C be a category
- Instead of talking about level_O ≤ level_S, we say that security level (L, C) dominates security level (L', C') if and only if L' ≤ L and C' ⊆ C
- Simple security now requires (L_S , C_S) to dominate (L_O , C_O) and S to have read access
- *-property now requires (L_O , C_O) to dominate (L_S , C_S) and S to have write access
- Problems?

Chinese Wall Model

Chinese Wall overview


- The Chinese Wall model respects both confidentiality and integrity
- It's important in business situations where there are conflict of interest issues
- Real systems, including British law, have policies similar to the Chinese Wall model
- Most discussions around the Chinese Wall model are couched in business terms

Chinese Wall definitions

- We can imagine the Chinese Wall model as a policy controlling access in a database
- The objects of the database are items of information relating to a company
- A company dataset (CD) contains objects related to a single company
- A conflict of interest (COI) class contains the datasets of companies in competition
- Let COI(O) be the COI class containing object O
- Let CD(O) be the CD that contains object O
- We assume that each object belongs to exactly one COI

COI Examples

Bank COI Class

Gasoline Company COI Class

CW-Simple Security Condition

- Let PR(S) be the set of objects that S has read
- Subject S can read O if and only if any of the following is true
 - There is an object O' such that S has accessed O' and CD(O') = CD(O)
 - 2. For all objects O', $O' \in PR(S) \Rightarrow COI(O') \neq COI(O)$
 - 3. O is a sanitized object
- Give examples of objects that can and cannot be read

CW-*-Property

- Subject S may write to an object O if and only if both of the following conditions hold
 - The CW-simple security condition permits S to read O
 - 2. For all unsanitized objects O', S can read $O' \Rightarrow CD(O') = CD(O)$

Biba Model

Biba overview

- Integrity based access control system
- Uses integrity levels, similar to the clearance levels of Bell-LaPadula
- Precisely the dual of the Bell-LaPadula Model
- That is, we can only read up and write down
- Note that integrity levels are intended only to indicate integrity, not confidentiality
- Actually a measure of accuracy or reliability

Formal rules

- S is the set of subjects and O is the set of objects
- Integrity levels are ordered
- i(s) and i(o) gives the integrity level of s or o, respectively
- Rules:
 - **1.** $s \in S$ can read $o \in O$ if and only if $i(s) \le i(o)$
 - 2. $s \in S$ can write to $o \in O$ if and only if $i(o) \le i(s)$
 - 3. $s_1 \in S$ can execute $s_2 \in S$ if and only if $i(s_2) \le i(s_1)$

Extensions

- Rules 1 and 2 imply that, if both read and write are allowed, i(s) = i(o)
- By adding the idea of integrity compartments and domination, we can get the full dual of the Bell-La Padula lattice framework
- Real systems (for example the LOCUS operating system) usually have a command like *run-untrusted*
- That way, users have to recognize the fact that a risk is being made
- What if you used the same levels for integrity and security, could you implement both Biba and Bell-La Padula on the same system?

Rootkits

Rootkits

- As you probably know, root is the highest level of privilege on a Unix-like system
- A rootkit is a program that gives you high-level access to an OS
- By downloading a rootkit, people who are not sophisticated hackers might be able to take over an OS

Phone rootkits

- Rootkits on phones used to be impossible (and pointless)
- Now, phones are incredibly important to our lives
- Researchers have created rootkits for phones that can:
 - Turn on your phone's microphone
 - Drain the batteries
 - Find your location with GPS
- Snowden's revelations showed that the NSA has listened to people's phones without them knowing
- There are no virus scanners for phones! (yet)

Rootkits evading detection

- Rootkits often work by evading detection
- The problem is that, if the rootkit has control of your OS, you can't trust what your OS shows you
- The rootkit could normally list files in your file explorer as long as they are not rootkit files
- Researchers have discovered rootkits by
 - Doing low level file operations to read the files present
 - Comparing the size of files reported by the OS with disk usage

Sony XCP rootkit

- Sony put a program on music CDs called XCP (extended copy protection) which allowed users to listen to the CD on Windows but not rip its contents
- It installed itself without the user's knowledge
- It had to have control over Windows and be hard to remove
- It would hide the presence of any program starting with the name \$sys\$

Patching Sony XCP

- Once people heard about XCP and became upset, Sony provided an uninstaller for it
- The uninstaller ran by connecting to a webpage, but changing to a different webpage allowed malicious code to run on your computer with full privileges
- Some researchers claim that the power that DRM needs on your computer is similar to what malicious programs want

TDSS rootkits

- TDSS is a family of rootkits, TDL-1 through TDL-4
- TDL-1 hides any files from the user that start with tdl
- It does so with special drivers that are loaded on startup by editing the registry
 - The regular drivers are hooked so that they jump to rootkit drivers before going back to regular code
- Later TDL versions obfuscate their code, send encrypted messages to their creators, and circumvent Windows protections for drivers
- In 2009 NetworkWorld estimated that 3 million computers were control by TDSS

Good rootkits?

- Some employers may put rootkits on their office computers, giving them complete control
 - If an employee is fired, leaves, or dies
 - If an employee is up to no good
- Parents can put rootkits on their children's computers
- Tools like antivirus software operates a lot like a rootkit
 - High privileges
 - Hard to disable or detect
 - What happens if your antivirus software is corrupted?

Ticket out the Door

Upcoming

Next time...

- Network security
- Network attacks
- Austin Rheyne presents
- No class on Monday!

Reminders

- Keep reading Sections 6.2 through 6.5
- Keep working on Project 2
 - Due next Friday
- Finish Assignment 3
 - Due tonight by midnight!